TR-16054

TERALINKTM

A cross-linked thermoplastic polymer for Optical Components that can withstand SMT processes

Sumitomo Electric Fine Polymer, Inc. Innovation Core SEI, Inc. (ICS) Sumitomo Electric Industries, Ltd.

July 2016

ELECTRIC

GROUP

SEI's Five Business Domains

ELECTRIC

GROUP

ICS Role: Creating New Biz. in North America

SUMITOMC

ELECTRIC

GROUP

Company Profile

Sumitomo Electric Fine Polymer, Inc. is a wholly-owned subsidiary of Sumitomo Electric Industries, Ltd. We specialize in electron beam irradiation technology and fluororesin processing technology supplying unique products to a wide range of industries including automobiles, information and communications, home electronics and infrastructure.

Company Name	Sumitomo Electric Fine Polymer, Inc.	Suita I.C ◀Kobe Sinosaka sta. Kyoto▶
Address	1-950, Asashiro nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0458 JAPAN TEL:+81-72-452-1301	Tokaido-Shinkansen Osaka sta. Hanshin Express Highway (Wangan-line) Kanjo Roop Line
Activities	Development and production of products made of fine polymer materials	Osaka bay Tennoji sta. Matsubara I.C Hanwa Express Hishway
Capital	10 billion yen	Kansai JR Hnwa-line
Number of employees	Approximately 480	International Airport Izumisano I.C Kumatori Kaizuka I.C

Products

Irradiated Products

- Heat-shrinkable tubing and heat resistant tapes
 - Thermoplastic polymer components (TERALINK)
- Functional Fluororesin Products
 - Fluororesin- coated aluminum products for cookers
 - Rollers for ink-jet printers
 - Porous materials made of PTFE for microfiltration

TR-16054

SUMITOMO

ELECTRIC

GROUP

GROUP

What is TERALINK?

Thermoplastic polymer cross-linked by electron-beam irradiation

- Advantages
 - Structurally stable at temperatures above melting point
 - Retains original shape and transmittance under reflow process (260 $^{\circ}$ C)
 - Improved resistance to wear
 - Improved resistance to chemicals

©2015 Sumitomo Electric Fine Polymer Inc. All Rights Reserved

Application example: Lens for SMT LED packages

©2015 Sumitomo Electric Fine Polymer Inc. All Rights Reserved

SUMITOMO

ELECTRIC

GROUP

Application example: Optical connectors

Lens for optical connectors

Optical connector

<Prod.>

Optical connectors (POF:650nm)

< R&D >

- Optical connectors (MMF:850nm)
- lens package for LEDs & PDs

Application example: Optical lens module for VCSELs

10Gbit/s AOC lens module

Deformation of the lens surface profile after reflow is within $1 \sim 2 \mu m$

9/17

T. Shimazu et al., Reflowable Thermoplastic Optical Lens Module for 10-Gbit/s Transmission with 850-nm VCSEL, OFC2015

SUMITOMC

ELECTRIC

GROUP

SUMITOMC

ELECTRIC

GROUP

Shift in the lens position after reflow

Test method - Reflow performed on 7 samples - Lens positions measured after reflow

Shift in the L1, L2 positions after reflow is at most 2.1um

©2015 Sumitomo Electric Fine Polymer Inc. All Rights Reserved

ELECTRIC

GROUP

Demonstration of 10Gbits/s transmission

ELECTRIC

GROUP

Transmittance spectrum

T>90%@650~850nm, ~90%@1300nm, 75~80%@1550nm

ELECTRIC

GROUP

Effect of reflow on transmittance

Transmittance spectrum remains virtually unchanged above 650nm

ELECTRIC

GROUP

Reliability data on transmittance

650nm \Rightarrow no degradation observed up to 3300h at 100°C 850nm \Rightarrow no degradation observed up to 3300h at 120°C

Material properties

	Test method	Unit	TERALINK ^{%1}	PEI
Density	ISO1183	g/cm3	1.0	1.3
Refractive index	JISK7142	—	1.51	1.64
Transmittance (2mm)	JISK7361	%	91	-
Transmittance (2mm, 650nm)	—	%	90	89
Transmittance (2mm, 850nm)	—	%	91	89
Haze	JISK7361	%	1.7	-
Glass transition temperature	ISO11357	°C	153 ^{%2}	217
Tensile strength at break	ISO527	MPa	73	110
Elongation at break	ISO527	%	29	60
Bending strength	ISO178	MPa	100	165
Bending elastic modulus	ISO178	GPa	1.8	3.5
Charpy impact strength (notched)	ISO179	KJ/m2	1.7	-
Water absorption (23°C/sat.)	ISO62	%	2.0	1.3
Water absorption (23°C/50%R.H.)	ISO62	%	1.0	-
Thermal expansion coefficient	ISO11359	10-4/K	0.9	0.6
Flammability	UL94	—	HB	V0
Specific volume resistivity	IEC93	Ω • cm	1.00E+11	1.00E+17

%1 Grade:TPN10A

*2 Teralink does not melt and keeps its original shape above Tg

SUMITOMO ELECTRIC

GROUP

ELECTRIC

GROUP

Summary

- TERALINK is a cross-linked thermoplastic polymer for Optical Components that can withstand SMT processes
- Features
 - Reflowable (260°C)
 - Transmittance is over 90%(600nm~1100nm)
 - Injection molding applicable (cost effective, high flexibility in design)
 - Hybrid structures of lens & supporting holder realized in a single molding process
- Applications include
- Lens for SMT-type LEDs or PDs
- Lens package for optical connectors
- Optical components for multi-mode fiber applications (VCSELs)
- We appreciate your feedback!

TR-16054

THANK YOU!

Sumitomo Electric Fine Polymer, Inc. Innovation Core SEI, Inc. (ICS) Sumitomo Electric Industries, Ltd.

June 2016