**CPTR-23012** 

# **TERALINK<sup>TM</sup>** Cross-linked thermoplastic polymer for optical components that can withstand SMT processes

Sumitomo Electric Fine Polymer, Inc. (SFP) Sumitomo Electric Industries, Ltd. (SEI)

Oct. 12, 2023

**Sumitomo Electric Fine Polymer, Inc.** is a wholly-owned subsidiary of Sumitomo Electric Industries, Ltd. We specialize in electron beam irradiation technology and fluororesin processing technology supplying unique products to a wide range of industries including automobiles, information and communications, home electronics and infrastructure.

| Company<br>Name     | Sumitomo Electric Fine Polymer, Inc.                                                             | Suita I.C<br>≺Kobe Sinosaka sta. Kyoto►                                                            |
|---------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Address             | 1-950, Asashiro nishi, Kumatori-cho,<br>Sennan-gun, Osaka, 590-0458 JAPAN<br>TEL:+81-72-452-1301 | Tokaido-Shinkansen<br>Osaka sta.<br>Hanshin Express Highway<br>(Wangan-line)<br>Kanjo<br>Roop Line |
| Activities          | Development and production of products made of fine polymer materials                            | Osaka bay Tennoji sta. Matsubara I.C<br>Hanwa Express<br>Hirbway                                   |
| Capital             | 10 billion yen                                                                                   | Kansai                                                                                             |
| Number of employees | Approximately 480                                                                                | International<br>Airport Izumisano I.C<br>Kumatori<br>Kaizuka I.C                                  |

**CPTR-23012** 

## **Products**



### Irradiated Products

- Heat-shrinkable tubing and heat resistant tapes
  - Thermoplastic polymer components (TERALINK)
- Functional Fluororesin Products
  - Rollers for ink-jet printers
  - Porous materials made of PTFE for microfiltration



Thermoplastic polymer cross-linked by electron-beam irradiation



- Advantages
  - Structurally stable at temperatures above melting point
  - Retains original shape and transmittance under reflow process (260  $^{\circ}$ C)
  - Improved resistance to wear
  - Improved resistance to chemicals

Lens for LEDs





with cross-linking without cross-linking



SUMITOMO ELECTRIC GROUP

**CPTR-23012** 

4/16

# **Application example:Optical Connectors**

### Lens package for optical connectors



#### Features

- Hybrid structure of lens and housing realized in single molding process
- Reflowable (260°C)

outer package for supporting lens

Applications

<**Prod.**> Optical connector (POF:650nm)



#### <R&D>

Optical connector (MMF:850nm etc.)



JMITOMO

# Application example: Optical lens module for VCSELs

#### 25Gbit/s AOC lens module



6/16

#### CPTR-23012

SUMITOMC

GROUP

### Demonstration of 25Gbits/s transmission



No noticeable change in eye pattern after reflow

7/16

#### ◆FRONT view



Measurement flow 1.Set AOC lens on jig and place jig on stage. 2.Measure bottom of guide-pin G1 and G2. 3.Origin is defined at center of G1 and G2. 4.Measure xy-coordinates of TX(L2),Rx(L2) for ch1~4. 5.Measure G1-G2 pitch.



- Measurement flow
- 1.Set AOC lens on stage with TX(L1),Rx(L1) facing up
- (see image on left).
- 2.Measure bottom of guide-pin G1 and G2.
- 3. Origin is defined at center of G1 and G2.
- 4. Measure xy-coordinates of TX(L1),Rx(L1) for ch1 $\sim$ 4.

SUMITOMC

# **Measurement results of shift in lens positions after reflow**

\*heat treatment in oven @260C x 5min.

#### Lens positions and G1-G2 pitch after simulated reflow\*



\*Lens coordinates defined to be at (0,0) before reflow



✓ FRONT view: Max shift of lens is 1.4µm
✓ BOTTOM view: Max shift of lens is 3.5µm
✓ G1-G2 pitch: Max shift is 3.5µm



**BOTTOM** view

SUMITOMO

GROUP

## Transmittance spectrum



T>90%@650~850nm, ~90%@1300nm, 75~80%@1550nm

GROUP

# Effect of reflow on transmittance



Transmittance spectrum remains virtually unchanged above 650nm

SUMITOMC

GROUP

# Reliability data on transmittance



650nm ⇒ no degradation observed up to 3300h at  $100^{\circ}$ 850nm ⇒ no degradation observed up to 3300h at  $120^{\circ}$ 

# Material properties

|                                  | Test method | Unit   | TERALINK <sup>%1</sup> | PEI      |
|----------------------------------|-------------|--------|------------------------|----------|
| Density                          | ISO1183     | g/cm3  | 1.0                    | 1.3      |
| Refractive index                 | JISK7142    | —      | 1.51                   | 1.64     |
| Transmittance (2mm)              | JISK7361    | %      | 91                     | -        |
| Transmittance (2mm, 650nm)       | —           | %      | 90                     | 89       |
| Transmittance (2mm, 850nm)       | —           | %      | 91                     | 89       |
| Haze                             | JISK7361    | %      | 1.7                    | -        |
| Glass transition temperature     | ISO11357    | °C     | 153 <sup>%2</sup>      | 217      |
| Tensile strength at break        | ISO527      | МРа    | 73                     | 110      |
| Elongation at break              | ISO527      | %      | 29                     | 60       |
| Bending strength                 | ISO178      | МРа    | 100                    | 165      |
| Bending elastic modulus          | ISO178      | GPa    | 1.8                    | 3.5      |
| Charpy impact strength (notched) | ISO179      | KJ/m2  | 1.7                    | -        |
| Water absorption (23°C/sat.)     | ISO62       | %      | 2.0                    | 1.3      |
| Water absorption (23°C/50%R.H.)  | ISO62       | %      | 1.0                    | -        |
| Thermal expansion coefficient    | ISO11359    | 10-4/K | 0.9                    | 0.6      |
| Flammability                     | UL94        | _      | HB                     | V0       |
| Specific volume resistivity      | IEC93       | Ω·cm   | 1.00E+11               | 1.00E+17 |

%1 Grade:TPN10A

%2 Teralink does not melt and keeps its original shape above Tg

13/16

SUMITOMO ELECTRIC

# **Process flow of Teralink products**



- Compounding of Teralink
- Inspection (compound)
- > Injection molding
- Gate cutting
- > Inspection (molded lens)
- E-beam irradiation
- Inspection (product)
- Packaging and Shipping

Teralink compounds are not available for sale

Inspection items are determined upon customer request

©2015 Sumitomo Electric Fine Polymer Inc. All Rights Reserved

### Summary

- TERALINK is a cross-linked thermoplastic polymer for optical components that can withstand SMT processes
- Features
  - Reflowable (260°C)
  - Transmittance is over 90%(600nm~1100nm)
  - Injection molding applicable (cost effective, high flexibility in design)
  - Hybrid structures of lens & supporting holder realized in a single molding process
- Applications include
- Lens for SMT-type devices with VCSELs or PDs
- Lens package for optical connectors
- Optical components for multi-mode fiber applications
- We appreciate your feedback!

TR-23012



# **Connect with Innovation**

https://sumitomoelectric.com/